Hopf Galois Structures on Modular Extensions

Alan Koch

Agnes Scott College

May 20, 2014

Outline

- Overview
- 2 A Construction
- Primitive Extensions
- 4 Example: The Case r = n 1
- Modular Extensions
- What's Next

Let L/K be a finite extension.

Let H be a (finite, commutative, cocommutative) K-Hopf algebra, comultiplication Δ , counit ε , antipode λ .

Suppose *L* is an *H*-module and the action satisfies, for $h \in H, x, y \in L, \otimes = \otimes_K$:

$$h(1) = \varepsilon(h)(1)$$

 $h(xy) = \text{mult } \Delta(h)(x \otimes y).$

Then L is an H-module algebra.

If, in addition, the map

$$L \otimes H \to \operatorname{End}_{\mathcal{K}}(L)$$

 $x \otimes h \mapsto (y \mapsto xh(y))$

is an isomorphism, then L/K is called Hopf Galois with Hopf algebra H, or H-Galois.

Example ("Hopf-Galois" ≥ "Galois")

If L/K is Galois, it is H-Galois, H = KG, G = Gal(L/K).

Action: $(a\sigma)(x) = a\sigma(x), a \in K, \sigma \in G, x \in L$.

Example ("Hopf-Galois" ≠ "Galois")

Let $K=\mathbb{Q}, L=\mathbb{Q}(\omega), \omega=\sqrt[3]{2}$. Then L/K is not Galois. Let:

$$egin{aligned} H &= \mathbb{Q}[c,s]/(3s^2+c^2-1,(2c+1)s,(2c+1)(c-1)) \ \Delta(c) &= c\otimes c - 3s\otimes s, arepsilon(c) = 1, \lambda(c) = c \ \Delta(s) &= c\otimes s + s\otimes c, arepsilon(s) = 0, \lambda(s) = -s \end{aligned}$$
 $egin{aligned} c(1) &= 1 & c(\omega) = -rac{1}{2}\omega & c(\omega^2) = -rac{1}{2}\omega^2 \ s(1) &= 0 & s(\omega) = rac{1}{2}\omega & s(\omega^2) = -rac{1}{2}\omega^2 \end{aligned}$

Then L/K is H-Galois.

Suppose L/K is separable. Is L/K Hopf Galois?

If so, is it Hopf Galois for more than one Hopf algebra?

[Greither-Pareigis, 1987] reduces these to group theory questions.

Let E be a Galois closure of L/K, G = Gal(E/K), and G' = Gal(E/L).

There is a one-to-one correspondence

$$\left\{\begin{array}{c} \mathsf{Hopf \ Galois \ structures} \\ \mathsf{on} \ \mathit{L/K} \end{array}\right\} \Leftrightarrow \left\{\begin{array}{c} \mathsf{Regular \ subgroups \ of \ Perm}(\mathit{G/G'}) \\ \mathsf{(left \ cosets) \ normalized \ by \ } \end{array}\right\}$$

So:

- Answers to existence/uniqueness questions only depend on the groups.
- The number of Hopf algebra structures on L/K is finite.

Suppose L/K is a primitive, purely inseparable extension, $[L:K] = p^n$.

Question. Is L/K Hopf Galois?

Yes [Chase, 1976].

Write $L = K(x), x^{p^n} = b \in K$.

Let
$$H = K[t]/(t^{p^n})$$
, $\Delta(t) = t \otimes 1 + 1 \otimes t$, $\varepsilon(t) = 0$, $\lambda(t) = -t$.

Define $\alpha: L \to L \otimes H$ by

$$\alpha(\mathbf{x}) = \mathbf{x} \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{t}.$$

Taking duals gives an action $L \otimes H^* \to L$ which makes L/K H^* -Galois.

Pink = Previous Slide

Suppose L/K is a primitive, purely inseparable extension, $[L:K] = p^n$.

New Question. Is L/K Hopf Galois for more than one choice of Hopf algebra?

[Chase, 1976] suggests the answer is yes if n > 1.

We will show this is the case, and construct an example where L/K has an infinite number of Hopf Galois structures.

As with [Chase, 1976], we will consider the coaction dual to the Hopf Galois action.

Let H be a K-Hopf algebra. L is an H-Galois object if there exists a K-algebra map $\alpha:L\to L\otimes H$ such that

$$(\alpha \otimes 1)\alpha = (1 \otimes \Delta)\alpha$$

 $\operatorname{mult}(1 \otimes \varepsilon)\alpha = 1$

and the map $\gamma: L \otimes L \to L \otimes H$ given by

$$\gamma(\mathbf{x}\otimes\mathbf{y})=\mathbf{x}\alpha(\mathbf{y})$$

is an isomorphism.

Fact. L/K is H-Galois iff L is an H^* -Galois object.

Outline

- Overview
- 2 A Construction
- Primitive Extensions
- 4 Example: The Case r = n 1
- Modular Extensions
- What's Next

Some Witt polynomials

For each $d \geq 0$, define $w_d(Z_0, \ldots, Z_d) \in \mathbb{Z}[Z_0, \ldots, Z_d]$ by

$$w_d(Z_0,\ldots,Z_d) = Z_0^{p^d} + pZ_1^{p^{d-1}} + \cdots + p^dZ_d.$$

Define $S_d \in \mathbb{Z}[X_0, \dots, X_d, Y_0, \dots, Y_d]$ recursively by

$$w_d(S_0,...,S_d) = w_d(X_0,...,X_d) + w_d(Y_0,...,Y_d).$$

Yes, the coefficients are in \mathbb{Z} .

We continue to assume char K = p.

Pick $0 < r < n, f \in K^{\times}$. Let $d = \lceil n/r \rceil - 1$.

Define a sequence $\{f_i : i \geq 1\}$ in the algebraic closure \bar{K} by

$$f_1 = f^{p^{-1}}, f_i = f^{p^{-i}} f_{i-1}^{p^r}, i > 1.$$

Let $H_{n,r,f} = K[t]/(t^{p^n})$ and define

$$\Delta(t) = S_d((f_d t^{p^{dr}} \otimes 1, \dots, f_1 t^{p^r} \otimes 1, t \otimes 1);$$

$$(1 \otimes f_d t^{p^{dr}}, \dots, 1 \otimes f_1 t^{p^r}, 1 \otimes t))$$

$$\varepsilon(t) = 0$$

$$\lambda(t) = -t.$$

Proposition

 $H_{n,r,f} = K[t]/(t^{p^n})$ is a K-Hopf algebra.

$$egin{aligned} \mathcal{H}_{n,r,f} &= \mathcal{K}[t]/(t^{p^n}), \ & \Delta\left(t
ight) &= \mathcal{S}_{\mathcal{G}}((f_{\mathcal{G}}t^{p^{\mathcal{G}r}}\otimes 1,\ldots,f_1t^{p^r}\otimes 1,t\otimes 1); \ & (1\otimes f_{\mathcal{G}}t^{p^{\mathcal{G}r}},\ldots,1\otimes f_1t^{p^r},1\otimes t)). \end{aligned}$$

Facts

- \bullet $H_{n,r,f}$ is a local K-algebra.
- $P_{n,r,f}^*$ is a local K-algebra. We say $H_{n,r,f}$ is "local-local".
- \bullet If $f, f' \in K^{\times}$ and $f/f' \in (K^{\times})^{p^{r+1}-1}$, then $H_{n,r,f} \cong H_{n,r,f'}$.
- 4 If $2r \ge n$ then the converse holds: $H_{n,r,f} \cong H_{n,r,f'}$ iff $f/f' \in (K^{\times})^{p'+1}-1$.

$$egin{aligned} H_{n,r,f} &= K[t]/(t^{p^n}), \ & \Delta\left(t
ight) &= \mathcal{S}_d((f_d t^{p^{dr}} \otimes 1, \ldots, f_1 t^{p^r} \otimes 1, t \otimes 1); \ & (1 \otimes f_d t^{p^{dr}}, \ldots, 1 \otimes f_1 t^{p^r}, 1 \otimes t)), \end{aligned}$$

$$H_{n,r,f} \cong H_{n,r,f'}$$
 iff $f/f' \in (K^{\times})^{p^{r+1}-1}$.

Example

Let k be a perfect field, $K = k(T_1, T_2, ...)$. Let $2r \ge n$.

Then for all $i \neq j$, $H_{n,r,T_i} \ncong H_{n,r,T_j}$, and so there are an infinite number of isomorphism classes of these Hopf algebras.

Example (Case d = 1, i.e., $2r \ge n$.)

$$\begin{split} \Delta(t) &= S_{1}((f_{1}t^{p^{r}} \otimes 1, t \otimes 1); (1 \otimes f_{1}t^{p^{r}}, 1 \otimes t)) \\ &= t \otimes 1 + 1 \otimes t + \sum_{\ell=1}^{p-1} \frac{1}{\ell!(p-\ell)!} (f_{1}t^{p^{r}})^{\ell} \otimes (f_{1}t^{p^{r}})^{p-\ell} \\ &= t \otimes 1 + 1 \otimes t + f_{1}^{p} \sum_{\ell=1}^{p-1} \frac{1}{\ell!(p-\ell)!} t^{p^{r}\ell} \otimes t^{p^{r}(p-\ell)} \\ &= t \otimes 1 + 1 \otimes t + f \sum_{\ell=1}^{p-1} \frac{1}{\ell!(p-\ell)!} t^{p^{r}\ell} \otimes t^{p^{r}(p-\ell)}. \end{split}$$

(Recall $f_1 = f^{p^{-1}}$.)

Outline

- Overview
- A Construction
- Primitive Extensions
- 4 Example: The Case r = n 1
- Modular Extensions
- What's Next

Let $L = K(x), x^{p^n} = b \in K, [L : K] = p^n$.

Define $\alpha: L \to L \otimes H_{n,r,f}$ by

$$\alpha(x) = S_d((f_d x^{p^{dr}} \otimes 1, \dots, f_1 x^{p^r} \otimes 1, x \otimes 1); (1 \otimes f_d t^{p^{dr}}, \dots, 1 \otimes f_1 t^{p^r}, 1 \otimes t)).$$

(Can show $\alpha(x)^{p^n} = b \otimes 1$, so α is a well-defined K-algebra map.)

Since Witt vector addition is associative, $(\alpha \otimes 1)\alpha = (1 \otimes \Delta)\alpha$.

Also, since $\varepsilon(t) = 0$,

$$(1 \otimes \varepsilon)\alpha(x) = S_d((f_d x^{p^{dr}} \otimes 1, \dots, x \otimes 1); (1 \otimes f_d \varepsilon(t)^{p^{dr}}, \dots, 1 \otimes \varepsilon(t)))$$

= $x \otimes 1$,

so mult(1 $\otimes \varepsilon$) α = 1.

The induced map $\gamma: L \otimes L \to L \otimes H_{n,r,f}$ is an isomorphism.

Thus, L is an $H_{n,r,f}$ -Galois object.

The coaction depends on the chosen algebra generator of *L*.

Example (Assume *p* odd.)

Let $y = x^2$. Then L = K(y) and $x = b^{-1}y^{(p^n+1)/2}$. Then we can define $\alpha': L \to L \otimes H_{n,r,f}$ by

$$\alpha'(y) = S_d((f_d y^{p^{dr}} \otimes 1, \ldots, f_1 y^{p^r} \otimes 1, y \otimes 1); (1 \otimes f_d t^{p^{dr}}, \ldots, 1 \otimes f_1 t^{p^r}, 1 \otimes t)).$$

So

$$\alpha'(x) = b^{-1}\Delta(y)^{(p^n+1/2)} \neq \alpha(x).$$

More generally, let $y_i = x^i$, $1 \le i \le p^n - 1$, $p \nmid i$. Then $L = K(y_i)$, and

$$\alpha_i(y_i) = S_d((f_d y_i^{p^{dr}} \otimes 1, \dots, f_1 y_i^{p^r} \otimes 1, y_i \otimes 1); (1 \otimes f_d t^{p^{dr}}, \dots, 1 \otimes f_1 t^{p^r}, 1 \otimes t))$$

can be used to make L an $H_{n,r,f}$ -Galois object.

We have $p^{n-1}(p-1)$ different coactions.

Theorem

Let $[L : K] = p^n, L = K(x), x^{p^n} \in K$. For 0 < r < n and $f \in K^{\times}$, let $H_{n,r,f} = K[t]/(t^{p^n})$,

$$\Delta(t) = S_d((f_d t^{p^{dr}} \otimes 1, \ldots, f_1 t^{p^r} \otimes 1, t \otimes 1); (1 \otimes f_d t^{p^{dr}}, \ldots, 1 \otimes f_1 t^{p^r}, 1 \otimes t)).$$

Then L/K is $H_{n,r,f}^*$ -Galois.

If we allow n = r then $H_{n,n,0}$ is Chase's Hopf algebra (and the choice of f is irrelevant).

Outline

- Overview
- A Construction
- Primitive Extensions
- 4 Example: The Case r = n 1
- Modular Extensions
- What's Next

The Greither-Pareigis results describe actions, not coactions.

Suppose r = n - 1.

Then
$$H_{n,n-1,f} \cong H_{n,n-1,f'}$$
 iff $f/f' \in (K^{\times})^{p^{r+1}-1}$.

Let
$$H = H_{n,n-1,f}^*$$
.

Objectives.

- Explicitly describe the Hopf algebra structure on H.
- 2 Explicitly describe an action of H on L.

Let
$$H = H_{n,n-1,f}^*$$

H has *K*-basis $\{z_j: 0 \le j \le p^n - 1\}$, where

$$z_i(t^i) = \delta_{i,j}$$
 (Kronecker delta).

The algebra structure arises from the coalgebra structure on $H_{n,n-1,f}$:

$$\begin{split} (z_{j_1}z_{j_2})(t^i) &= \mathsf{mult}(z_{j_1} \otimes z_{j_2}) \Delta(t^i) \\ &= \mathsf{mult}(z_{j_1} \otimes z_{j_2}) (S_1((f_1t^{p^{n-1}} \otimes 1, t \otimes 1); (1 \otimes f_1t^{p^{n-1}}, 1 \otimes t))^i \\ &= \mathsf{mult}(z_{j_1} \otimes z_{j_2}) \Big(t \otimes 1 + 1 \otimes t + f \sum_{\ell=1}^{p-1} t^{p^{n-1}\ell} \otimes t^{p^{n-1}(p-\ell)} \Big)^i. \end{split}$$

$$(z_{j_1}z_{j_2})(t^i) = \mathsf{mult}(z_{j_1} \otimes z_{j_2}) \Big(t \otimes 1 + 1 \otimes t + f \sum_{\ell=1}^{p-1} t^{p^{n-1}\ell} \otimes t^{p^{n-1}(p-\ell)}\Big)^i$$

For for 1 < m < p - 1, 0 < s < n - 1 it can be shown:¹

- $z_{p^s}^m = m! z_{mp^s}$
- for $s \neq n-1, z_{ns}^p = 0$
- $z_{n^{n-1}}^p = fz_1$
- $z_{n^{n-1}}^{p^2} = 0$
- *H* is generated as a *K*-algebra by $\{z_p, \ldots, z_{p^{n-1}}\}$:

$$H = K[z_p, \dots, z_{p^{n-1}}]/(z_p^p, \dots, z_{p^{n-2}}^p, z_{p^{n-1}}^{p^2})$$

¹More detail Thursday.

The comultiplication on H is induced from the multiplication on $H_{n,n-1,f}$:

$$\Delta(z_j) \in H \otimes H \cong \operatorname{Hom}_K(H_{n,n-1,f} \otimes H_{n,n-1,f}, K)$$

$$\Delta(z_j)(t^{i_1} \otimes t^{i_2}) = z_j(t^{i_1+i_2}) = \delta_{(i_1+i_2),j}.$$

Sc

$$\Delta(z_j) = \sum_{i=0}^j z_i \otimes z_{j-i},$$

which can be written in terms of the algebra generators $\{z_{p^s}\}$ using p-adic expansions for each i.

In particular², since $z_1^i = i!z_i$ for i < p and $z_{p^{n-1}}^p = fz_1$,

$$\begin{split} \Delta(z_p) &= \sum_{i=0}^{p} z_i \otimes z_{p-i} \\ &= z_p \otimes 1 + 1 \otimes z_p + \sum_{i=1}^{p-1} z_i \otimes z_{p-i} \\ &= z_p \otimes 1 + 1 \otimes z_p + \sum_{i=1}^{p-1} (i!)^{-1} z_1^i \otimes ((p-i)!)^{-1} z_1^{p-i} \\ &= z_p \otimes 1 + 1 \otimes z_p + \sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} (f^{-1} z_{p^{n-1}}^p)^i \otimes (f^{-1} z_{p^{n-1}}^p)^{p-i} \\ &= z_p \otimes 1 + 1 \otimes z_p + f^{-p} \sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} z_{p^{n-1}}^{pi} \otimes z_{p^{n-1}}^{p(p-i)} \\ &= S_1((f^{-1} z_{p^{n-1}} \otimes 1, z_p \otimes 1); (1 \otimes f^{-1} z_{p^{n-1}}, 1 \otimes z_p)). \end{split}$$

²Less detail Thursday.

The Hopf Galois action $L \otimes H \to L$ is induced by the coaction $\alpha: L \to L \otimes H_{n,n-1,f}$:

$$z_{p^s}(x^i) = \mathsf{mult}(1 \otimes z_{p^s})\alpha(x^i).$$

Explicitly, if $i = \sum_{\ell=0}^{n-1} i_{\ell} p^{\ell}$ then:

$$z_{p^s}(x^i) = i_s x^{i-p^s}, 0 \le s < n-1$$

 $z_{p^{n-1}}(x^i) = i_{n-1} x^{i-p^{n-1}} - ifb x^{i-p^{n-1}-1}.$

(Recall
$$b = x^{p^n} \in K$$
.)

Example

Let *k* be a perfect field.

$$K = k(T_1, T_2, \dots).$$

$$L = K(x), x^{p^n} = b \in K, [L : K] = p^n, n > 1.$$

Then for all $i \neq j, H_{n,n-1,T_i} \not\cong H_{n,n-1,T_j}$ as before.

L/K is H-Galois for an infinite number of Hopf algebras H.

Contrast to the L/K separable case:

- Finite number of Hopf algebras.

Outline

- Overview
- A Construction
- Primitive Extensions
- 4 Example: The Case r = n 1
- Modular Extensions
- What's Next

Now suppose L/K is modular, i.e.

$$L \cong K(x_1) \otimes \cdots \otimes K(x_n), [K(x_i) : K] = p^{e_i}$$

[Chase, 1976] shows L is an H-Galois object for

$$H = K[t_1,\ldots,t_n]/(t_1^{p^{e_1}},\ldots,t_n^{p^{e_n}}), \Delta(t_i) = t_i \otimes 1 + 1 \otimes t_i.$$

This is a tensor product of Chase's Hopf algebras $H_{e_i,e_i,0}$.

Let

$$H = H_{e_1,r_1,f_1} \otimes \cdots \otimes H_{e_n,r_n,f_n}, 0 < r_n < e_n.$$

Then L can be made into an H-Galois object in

$$p^{e_1-1}p^{e_2-1}\cdots p^{e_n-1}(p-1)^n=[L:K]p^{-n}(p-1)^n$$

different ways.

Is L an H-Galois object for a more interesting choice of H?

Example (1)

Let $L = K(x, y), [K(x) : K] = [K(y) : K] = p^2$. Let $H = K(t, u)/(t^{p^2}, u^{p^2})$ with

$$\Delta(t) = t \otimes 1 + 1 \otimes t + \sum_{\ell=1}^{p-1} u^{p\ell} \otimes u^{p(p-\ell)}$$

$$\Delta(u) = u \otimes 1 + 1 \otimes u.$$

Define

$$\alpha(x) = x \otimes 1 + 1 \otimes t + \sum_{\ell=1}^{p-1} y^{p\ell} \otimes u^{p(p-\ell)}$$

$$\alpha(y) = y \otimes 1 + 1 \otimes u.$$
-Galois object.

Then L is an H-Galois object.

Example (2)

Same L = K(x, y). Let $H = K(t, u)/(t^{p^2}, u^{p^2})$ with

$$\Delta(t) = t \otimes 1 + 1 \otimes t + \sum_{\ell=1}^{p-1} (t-u)^{p\ell} \otimes (t-u)^{p(p-\ell)}$$

$$\Delta(u) = u \otimes 1 + 1 \otimes u + \sum_{\ell=1}^{p-1} u^{p\ell} \otimes u^{p(p-\ell)}.$$

Define

$$\alpha(x) = x \otimes 1 + 1 \otimes t + \sum_{\ell=1}^{p-1} (x - y)^{p\ell} \otimes (t - u)^{p(p-\ell)}$$
$$\alpha(y) = y \otimes 1 + 1 \otimes u + \sum_{\ell=1}^{p-1} y^{p\ell} \otimes u^{p(p-\ell)}.$$

Then L is an H-Galois object.

Crazy Idea

Let L/K be modular, and let H be a local-local Hopf algebra such that

$$L \otimes L \cong L \otimes H^*$$

as K-algebras. Then L is an H^* -Galois object (and hence L/K is H-Galois).

In other words, whether L/K is H-Galois depends only on the algebra structure of H^* .

Loosely,

$$L \cong K(x_1) \otimes \cdots \otimes K(x_n), [K(x_i) : K] = p^{e_i}$$

$$H = K(t_1, \dots, t_n) / (t_1^{p^{e_1}}, \dots, t_n^{p^{e_n}}),$$

and $\alpha: L \to L \otimes H$ arises from substituting x_i for t_i in the first factor of $\Delta(t_i)$ for all i.

Outline

- Overview
- A Construction
- Primitive Extensions
- 4 Example: The Case r = n 1
- Modular Extensions
- What's Next

Work to come (hopefully):

- Explicit computations of $H_{n,r,f}^*$ and its action on L when r < n-1, especially r < n/2.
- A necessary condition for $H_{n,r,f} \cong H_{n,r,f'}$.
 - Conjecture: the $2r \ge n$ condition extends to all r.
- For a fixed K, a count (or parameterization) of the isomorphism classes of Hopf algebras $H_{n,r,f}$.
- More examples not of the form $\bigotimes H_{n_i,r_i,f_i}$.
- Suppose k finite, $K = k((T)), \mathfrak{O}_K = k[[T]]$.
 - A classification of \mathfrak{O}_K -Hopf orders in $H_{n,r,f}$
 - A classification of \mathfrak{O}_K -Hopf orders in $H^*_{n,r,f}$
- Proof (or counterexample) to the Crazy Idea (but not right away).

Thank you.